Prior Definition Module

Functions to define prior distribution of parameters

InferenceWorkflow.prior.flat_prior(low, up, random)[source]

Generate a flat prior distribution for a given parameter,

Parameters:
  • low (float) – lower bound of this flat distribution.

  • up (float) – upper bound of this flat distribution.

  • random (float) – random number generated to do inference, this is follow the

  • UltraNest (definition of baysian workflow of)

  • cube[i] (here default to be)

Returns:

ppf of this distribution function

Return type:

ppf (float)

InferenceWorkflow.prior.normal_Prior(center, width, random)[source]

Generate a normal prior distribution for a given parameter,

Parameters:
  • center (float) – center value of this gaussian distribution.

  • width (float) – width of this gaussian distribution, this is the 1-sigma width.

  • random (float) – random number generated to do inference, this is follow the

  • UltraNest (definition of baysian workflow of)

  • cube[i] (here default to be)

Returns:

ppf of this distribution function

Return type:

ppf (float)