Prior Definition Module
Functions to define prior distribution of parameters
- InferenceWorkflow.prior.flat_prior(low, up, random)[source]
Generate a flat prior distribution for a given parameter,
- Parameters:
low (float) – lower bound of this flat distribution.
up (float) – upper bound of this flat distribution.
random (float) – random number generated to do inference, this is follow the
UltraNest (definition of baysian workflow of)
cube[i] (here default to be)
- Returns:
ppf of this distribution function
- Return type:
ppf (float)
- InferenceWorkflow.prior.normal_Prior(center, width, random)[source]
Generate a normal prior distribution for a given parameter,
- Parameters:
center (float) – center value of this gaussian distribution.
width (float) – width of this gaussian distribution, this is the 1-sigma width.
random (float) – random number generated to do inference, this is follow the
UltraNest (definition of baysian workflow of)
cube[i] (here default to be)
- Returns:
ppf of this distribution function
- Return type:
ppf (float)